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Abstract. We study the ground-state properties of frustrated Heisenberg ferrimagnetic ladders with anti-
ferromagnetic exchange interactions and two types of alternating sublattice spins. In the limit of strong
rung couplings, we show that the mixed spin-1/2 and spin-1 ladders can be systematically mapped onto a
spin-1/2 Heisenberg model with additional next-nearest-neighbor exchanges. The system is either in a fer-
rimagnetic state or in a critical spin-liquid state depending on the competition between the spin exchanges
along the legs and the diagonal exchanges.

PACS. 75.10.Jm Quantized spin models

1 Introduction

In the past years, there has been increasing theoretical in-
terest in the quantum ferrimagnetic systems since the ex-
perimental realization of bimetallic quasi-one-dimensional
(quasi-1D) magnets [1–3]. Pioneering experiments on
synthesizing the bimetallic chain compounds with each
unit cell containing two spins were carried out suc-
cessfully by Kahn et al. [1]. Typical compounds in-
clude two families of ferrimagnetic chains described by
ACu(pba)(H2O)3 · nH2O and ACu(pbaOH)(H2O)3 · nH2O,
where pba = 1, 3-propylenebis (Oxamato), pbaOH = 2-
hydroxo-1,3-propylenebis (Oxamato) and A = Ni, Fe, Co,
and Mn [2,3]. These materials are quasi-1D bimetallic
molecular magnets containing two different transition-
metal ions per unit cell alternatingly distributed on a
chain. Most of these materials are described by Heisenberg
mixed-spin models with antiferromagnetic interactions.
This has stimulated theoretical studies on the mixed-spin
systems. A number of recent studies have been focused
on ground-state properties of mixed-spin chain [4–8] and
ladders [9–15] composed of two kinds of spins with half-
integer and integer spins alternatively. It is well-known
that a half-integer antiferromagnetic spin chain has gap-
less excitation spectrum and the integer ones show the
Haldane gap in their low energy spectrum, however the
1D ferrimagnets behave differently and exhibit intriguing
quantum spin phases and thermodynamic properties. One
of the intriguing features of the mixed-spin chain is that
the ground state has a long-range ferrimagnetic order.
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While the physics of the mixed-spin chain is well un-
derstood, the spin ladders are still under intensive inves-
tigation since they exhibit rich phase diagrams. So far, a
large class of mixed-spin two-leg ladders are investigated,
but most of studies concern the physics of unfrustrated
mixed-spin ladders. For the unfrustrated bipartite ladder
with alternating half-integer and integer spins on neigh-
boring sites, the ground state is shown to exhibit long-
range order [7]. In general, for the uniform spin ladders,
frustration reduces the antiferromagnetic correlations and
may produce various exotic quantum ground states such
as the dimerized state [16–18]. In comparison with the
uniform systems, less attention is paid to the role of frus-
tration in the mixed spin systems and it is quite interesting
to explore how the ferrimagnetic order is affected by the
frustration [14,15]. Recently, the effect of magnetic frus-
trations due to diagonal exchange bonds in a mixed-spin
ladder was studied by using the approach of exact nu-
merical diagonalization [15] for a special case with equal
strengths of the rung coupling and diagonal couplings. It
was shown that the long-range ferrimagnetic state may be
destroyed and a singlet state appears at a large value of the
frustration parameter. However, it is not clear how the di-
agonal frustrations compete with the exchanges along the
legs and whether an exotic intermediate phase exists for
arbitrary rung coupling. Furthermore, an analytical analy-
sis which works in both regimes with weak and strong frus-
trations is still lack. The general analytical method based
on the spin wave theory is not capable to deal with the
regime with strong frustration where the long-range order
is destroyed. In order to provide a general understanding
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Fig. 1. Schematical representation of the mixed-spin ladder
with diagonal exchanges. The open and close circles represent
spins si,1 = 1/2 and Si,2 = 1 respectively.

to frustration effect in the ferrimagnetic ladder system, in
this work we carry out analytical investigation on the ex-
tended antiferromagnetic mixed-spin ladders in the limit
of strong rung couplings. When the rung coupling is dom-
inated, it is convenient and natural to map the original
model onto an effective spin-1/2 exchange model. Based
on the effective model, we show that the ground-state
properties for both the frustrated and non-frustrated lad-
ders can be understood within the same framework and
the phase transition from a ferrimagnetic state to a crit-
ical spin-liquid state is also discussed. In our theory, we
treat the weak and strong frustrations on same footing.
For generality, we consider the most general frustrated lad-
der model with arbitrary strengths of exchanges of spins
along the two legs as well as the diagonal exchanges. Our
model can interpolate between a variety of systems, ex-
hibiting remarkably rich ground state behavior with both
ordered and disordered phases.

2 Model and the effective Hamiltonian

As shown in Figure 1, the extended frustrated mixed-spin
ladder is made of two types of spins with magnitude s

i,1 =
1/2 and Si,2 = 1 located on the rungs of the ladder. The
corresponding Hamiltonian of the mixed-spin ladder takes
the form

H = H0 + H ′ (1)

with

H0 =
N∑

i=1

Hi = J⊥
N∑

i=1

ŝi,1 · Ŝi,2 (2)

and

H ′ =
N∑

i=1

Hi,i+1 (3)

where

Hi,i+1 = H leg1
i,i+1 + H leg2

i,i+1 + Hd1
i,i+1 + Hd2

i,i+1 (4)

and

H leg1
i,i+1 = J1ŝi,1 · ŝi+1,1

H leg2
i,i+1 = J2Ŝi,2 · Ŝi+1,2

Hd1
i,i+1 = J×ŝi,1 · Ŝi+1,2

Hd2
i,i+1 = J ′

×Ŝi,2 · ŝi+1,1. (5)

Here N is the number of rungs, and ŝi,1 and Ŝi,2 repre-
sent the spin-1/2 and spin-1 operators respectively. For
the antiferromagnetic ladder, all the coupling parameters
J⊥, J1, J2, J×, J ′

× > 0. The intrachain couplings along the
up and down legs are denoted by J1 and J2 respectively.
The interchain coupling across the rungs is J⊥ and the di-
agonal exchanges between the rungs are J× and J ′

×. The
summation is over the length of the chains and the peri-
odic boundary is assumed. For such a ladder model, the
frustration comes from the competition between the in-
trachain couplings (J1 and J2) and the diagonal couplings
(J× and J ′

×). The model of (1) covers a variety of known
models. The model with J1 = J2 = 0 corresponds to a
bipartite mixed-spin ladder model whereas the one with
J× = J ′

× = 0 is equivalent to the railroad ladder model.
For J1 = J2 and J× = J ′

×, our model reduces to the ladder
model investigated in reference [15], where only the case
with J⊥ = J× was considered. For J1 = J2 and J ′

× = 0,
the model is the dimerized zigzag mixed-spin ladder [5,
14].

In this work, we will focus on the strong coupling limit
with J⊥ � J1, J2, J×, J ′

×. In this limit, the interactions
between the neighboring rungs can be treated as pertur-
bations of the system of uncoupled rungs. It is instructive
to start by considering the two-site problem on an isolated
rung with the Hamiltonian given by

Hi = J⊥ŝi,1 · Ŝi,2.

Eigenstates of the local Hamiltonian on a rung can be
classified according to the value of the total rung spin
Si. The two spins with magnitude si,1 = 1/2 and Si,2 =
1 can combine into Si = 1/2 and 3/2. It is easy to get
the eigenenergy E1/2 = − J⊥ and E3/2 = J⊥/2. The
corresponding eigenstates are
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for the quartet, where |sz, Sz〉i = |sz〉i,1 ⊗ |Sz〉i.2. It is
obvious that the ground state of a rung is a doublet and
the excited state is a quartet with an excitation energy
gap 3J⊥/2. Therefore in the strong rung-coupling limit
spins on each rung of the ladder favor forming a doublet.
Since each rung can be either in the doubly degenerate
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state
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〉
or

∣∣∣D− 1
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〉
, the ground state of the zero-order

Hamiltonian H0 is 2N−foldly degenerate. When we go be-
yond the two-site problem, we need consider the inter-rung
couplings. In general, the inter-rung exchanges will lift the
degeneracy of the zero-order ground state and leads to an
effective Hamiltonian acting on the groundstate Hilbert
space of H0.

We then derive the effective Hamiltonian of the origi-
nal ladder model in the truncated Hilbert space composed
of product of rung doublets by using perturbation method.
Similar schemes have been applied to study uniform spin
ladders in the strong-coupling limit [19,20]. To the first
order and up to a constant of −NJ⊥, the effective Hamil-
tonian can be represented as

H
(1)
eff =

∑

i

〈µi,i+1|Hi,i+1 |υi,i+1〉 |µi,i+1〉 〈υi,i+1| (6)
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With the above notation, we can identify the following
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Therefore we can rewrite terms of |µi,i+1〉 〈υi,i+1| in terms
of the pseudo-spin operators. For example, we have

|µi,i+1〉 〈υi,i+1| = τ̂+
i τ̂−

i+1

for |µi,i+1〉 =
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and the corresponding coefficient is

given by

〈µi,i+1|Hij |νi,i+1〉 = −2
9
(J× + J ′

×) +
1
18

J1 +
8
9
J2.

After some algebras, we can rewrite the effective
Hamiltonian (6) as the following form

H
(1)
eff /J⊥ =

∑

i

J
(1)
eff

[
1
2

(
τ̂+
i τ̂−

i+1 + τ̂−
i τ̂+

i+1

)
+ τ̂z

i τ̂z
i+1

]
(7)

with the effective parameter given by

J
(1)
eff = −4

9

(
J×
J⊥

+
J ′×
J⊥

)
+

1
9

J1

J⊥
+

16
9

J2

J⊥
. (8)

Next we carry out calculation of the second order pertur-
bation which is expected to give correction to the effective
coupling parameter and the ground energy. In the first or-
der calculation, the higher excited states (quartets) on the
isolated rungs do not play role. However, such rung quar-
tets give contribution to the higher order correction. The
second order correction can be described by

H
(2)
eff =

∑

i,m �=0

〈µi,i+1|Hi,i+1 |m〉 〈m|Hi,i+1 |υi,i+1〉
E0 − Em

× |µi,i+1〉 〈υi,i+1| (9)

where E0 = 2E1/2 = −2J⊥ and |m〉 are the intermediate
states with at least one quartet residing in the neighboring
ith and (i + 1)th rungs. Therefore Em = E1/2 + E3/2 =
−J⊥/2 if |m〉 = {|Dα〉i |Qβ〉i+1 or |Qβ〉i |Dα〉i+1}, and
Em = 2E3/2 = J⊥ if |m〉 = |Qβ〉i |Qβ′〉i+1 where α =
−1/2, 1/2, and β, β′ = −3/2,−1/2, 1/2, 3/2. After tedious
but straightforward calculation, we can represent H

(2)
eff in

terms of the pseudo-spin operators

H
(2)
eff /J⊥ =

∑

i

[
J

(2)
eff τ̂i · τ̂i+1 + c′

]
, (10)
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The second order correction can also produce a term due
to the three-site process which is described by

〈µi,i+1,i+2|H ′(2)
eff |υi,i+1,i+2〉 =

∑

i,m �=0

[ 〈µi,i+1,i+2|Hi,i+1 |m〉 〈m|Hi+1,i+2 |υi,i+1,i+2〉
E0 − Em

+
〈µi,i+1,i+2|Hi+1,i+2 |m〉 〈m|Hi,i+1 |υi,i+1,i+2〉

E0 − Em

]
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where E0 = 3E1/2 = −3J⊥ and |m〉 are the intermediate
states with a quartet residing in the (i + 1)th rung. In
terms of the pseudo-spin operators, the Hamiltonian H

′(2)
eff

is finally simplified to

H
′(2)
eff /J⊥ =

N∑

i=1

J ′
eff τ̂i · τ̂i+2 (13)

with

J ′
eff = − 8
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)
. (14)

Therefore, up to the second order, the effective Hamilto-
nian of the original ladder can be written as

Heff /J⊥ =
N∑

i=1

(
Jeff τ̂i · τ̂i+1 + J ′

eff τ̂i · τ̂i+2 + c
)
, (15)

where Jeff = J
(1)
eff + J

(2)
eff and c = −1 + c′. The effective

Hamiltonian (15) describes a spin-1/2 Heisenberg chain
with additional next-nearest-neighbor (NNN) exchanges.

3 Phase diagram and discussion

It is convenient to determine the phase diagram of the
original ladder model from the effective Hamiltonian
(15) since it has a much simpler form and was widely
studied. Since the terms with NNN exchanges come
from the second-order perturbation, in general we always
have

∣∣∣J ′
eff

∣∣∣ � |Jeff |. A small NNN ferromagnetic inter-
action is an irrelevant perturbation to the spin chain
model [17,21]. Therefore we may approximate to deter-
mine the phase diagram by omitting the term of J ′

eff .

The effective Hamiltonian (15) with J ′
eff = 0 describes

either a ferromagnetic or an antiferromagnetic spin-1/2
Heisenberg chain depending on the sign of the effective pa-
rameter. Based on the effective Hamiltonian, one is ready
to get the ground energy of the mixed-spin ladder (1 ) in
the strong coupling limit:

Eg/NJ⊥ = εH + δε′ + c, (16)

where εH is the ground energy per site of an isotropic
spin-1/2 Heisenberg chain and δε′ is the energy correction
due to the NNN exchanges which reads

δε′ = 〈GS|H ′(2)
eff |GS〉 /NJ⊥

with |GS〉 representing the ground state of Heisenberg
chain. From the corresponding results of the well-known
Heisenberg chain [22,23], we have

εH/Jeff =
{

1/4, for Jeff < 0
1/4 − ln 2, for Jeff > 0.

When the system is in the ferromagnetic state, it is ready
to obtain

δε′ = J ′
eff /4.

When the system is in the antiferromagnetic phase, no an
analytical result is available.

From equation (8), we see that the diagonal ex-
changes tend to produce an effective ferromagnetic cou-
pling whereas the exchanges along the legs lead to an
effective antiferromagnetic coupling. Both the ferromag-
netic and antiferromagnetic spin-1/2 Heisenberg chains
are exactly solved by the Bethe-ansatz method [22,23], but
they have very different ground-state properties. The fer-
romagnetic ground state consists of all spins parallel and
thus has long-range order, whereas the antiferromagnetic
ground state is a spin singlet which can be described by the
critical spin-liquid phase. If Jeff < 0, the effective model
is a ferromagnetic chain which exhibits gapless excitations
and ferromagnetic ground state. Equivalently, within the
first order approximation the original mixed-spin ladder
has ferrimagnetic ground state if J× + J ′

× > J1/4 + 4J2.
On the other hand, the effective model is an antiferromag-
netic chain if Jeff > 0. Correspondingly, the ground state
of the original mixed-spin ladder is a critical spin liquid if
J× + J ′

× < J1/4 + 4J2.
As we have mentioned that our mixed-spin ladder

model includes a series of models as its special cases, we
may understand the ground-state properties of these mod-
els by using our derived effective Hamiltonian (15). When
J1 = J2 = 0, our model reduces to a bipartite mixed-spin
ladder model. The effective model (15) is a ferromagnetic
Heisenberg chain because we have Jeff < 0. Therefore we
can conclude that the total spin of the ground state is
N/2. When J× = J ′× = 0, we get the railroad ladder
model composed of coupled spin-1/2 and spin-1 chains.
It is ready to conclude that its ground state is a singlet
because the effective model (15) is an antiferromagnetic
Heisenberg chain with Jeff > 0. For the frustrated spin
ladder with J1 = J2 and J× = J ′

×, it is easy to see from
the effective model (15) that there exists a quantum phase
transition arising from the competition of J1 and J×. The
transition point is determined by Jeff = 0 with

Jeff = −8
9

J×
J⊥

+
17
9

J1

J⊥
− 56

81

(
J1

J⊥
− J×

J⊥

)2

. (17)

From the solution of the above equation, we can get the
phase diagram of the mixed spin ladder as shown in Fig-
ure 2. Above the phase boundary the original ladder is in
a ferrimagnetic phase corresponding to Jeff < 0, whereas
the system is in an antiferromagnetic phase with Jeff > 0
below the phase boundary.

In order to check how good is our theory based on
the perturbation method and the validation of the phase
boundary determined by Jeff = 0, we study the origi-
nal spin ladder model by exact diagonalization method
and determine its phase diagram numerically. The phase
boundary determined by the effective spin chain model is
not sensitive to the size of the system (Actually the phase
boundary is completely independent of the size when we
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Fig. 2. Phase diagram of the mixed-spin ladder with J1 =
J2 and J× = J ′

× in the strong coupling limit. The solid line
is the phase boundary determined by Jeff = 0 whereas the
separated dots denoted by stars are obtained from the exact
diagonalization of the spin ladder model.

omit the term of NNN interaction). Therefore for the pur-
pose of verification of our analytical result, it is enough for
us to consider a 2×4-size ladder which can be diagonalized
by the exact diagonalization method. The phase boundary
can be determined simply by the ground state degeneracy
of the system. In comparison with phase boundary ob-
tained by omitting the term of the NNN exchanges, we
find that they agree very well in the strong coupling limit
and as expected, the analytical result begins to deviate
the exact numerical result when J1/J⊥ increases.

Finally, we address a special point with J1 = J2 =
J× = J ′

× where the total spin on a rung is a good quantum
number. From equation (8), it is obvious that the model
is effectively described by an antiferromagnetic spin chain
with an effective coupling constant of J1 and the high-
order corrections vanish due to J

(2)
eff = J ′

eff = 0. Actually
this is an exact conclusion for this special case. This is
clear if we rewrite the original Hamiltonian as

H =
N∑

i=1

[
J⊥
2

Ŝ2
i + J1Ŝi · Ŝi+1 − 11J⊥

8

]
, (18)

where Ŝ2
i = Si(Si + 1) with Si = 1/2 or 3/2 and Ŝi is de-

fined as Ŝi ≡ ŝi,1 + Ŝi,2 denoting the total spin on the ith
rung. In the strong coupling limit J⊥ � J1, J⊥ forces Si to
take the value of 1/2 and thus the ground-state properties
of H is described by an effective spin-1/2 antiferromag-
netic Heisenberg chain. From equations (11) and (12), we
see that J

(2)
eff = c′ = 0 when J1 = J2 = J× = J ′×. This

implies that the higher order correction also conforms to
the exact result in this special case.

4 Conclusions

In conclusion, we have studied the ground-state proper-
ties of a generalized mixed-spin ladder with diagonal ex-
changes in the limit of strong rung couplings. By mapping
it to an effective spin-1/2 Heisenberg chain with additional
NNN exchanges, we find that the diagonal exchanges lead
to the ferromagnetic effective coupling whereas the ex-
changes along the legs produces the antiferromagnetic ef-
fective coupling. The ground state of the effective Hamil-
tonian is either ferromagnetic or antiferromagnetic de-
pending on the competition between these two opposite
processes. With the help of the effective Hamiltonian
and omitting the additional small NNN exchanges, it is
straightforward to analytically determine the transition
point from the ferrimagnetic phase to the critical spin liq-
uid phase. The phase boundary is found to agree with
the result obtained by exact numerical diagonalization of
the original spin ladder model. Our results show that the
strong coupling approach provides a simple and unifying
way to exhibit the rich physics of the mixed-spin ladders.

This work is supported by NSF of China under Grant No.
10574150 and programs of Chinese Academy of Sciences.
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